
-

UNIX PROGRAMMER’S MANU AL

Sixth Edition

K. Thompson

D. M. Ritchie

May, 1975

-

This manual was set by a Graphic Systems phototypeset-
ter driven by the troff formatting program operating un-
der the UNIX system. The text of the manual was pre-
pared using theedtext editor.

-

PREFACE
to the Sixth Edition

We are grateful to L. L. Cherry, R. C. Haight, S. C. Johnson, B. W. Kernighan, M. E. Lesk, and E. N. Pin-
son for their contributions to the system software, and to L. E. McMahon for software and for his contribu-
tions to this manual. We are particularly appreciative of the invaluable technical, editorial, and administra-
tive efforts of J. F. Ossanna, M. D. McIlroy, and R. Morris. They all contributed greatly to the stock of
UNIX software and to this manual. Their inventiveness, thoughtful criticism, and ungrudging support in-
creased immeasurably not only whatever success theUNIX system enjoys, but also our own enjoyment in its
creation.

1

-

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available features of UNIX. It provides neither a general
overview − see ‘‘The UNIX Time-sharing System’’ (Comm. ACM 17 7, July 1974, pp. 365-375) for that −
nor details of the implementation of the system, which remain to be disclosed.

Within the area it surveys, this manual attempts to be as complete and timely as possible.A conscious de-
cision was made to describe each program in exactly the state it was in at the time its manual section was
prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. In-
evitably, this means that many sections will soon be out of date.

This manual is divided into eight sections:

I. Commands
II. Systemcalls
III. Subroutines
IV. Special files
V. File formats and conventions
VI. User-maintained programs
VII. User-maintained subroutines
VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user’s programs. Commandsgenerally reside in directory/bin (for
binary programs). Some programs also reside in / usr/ bin, to save space in /bin. These directories are
searched automatically by the command interpreter.

System calls are entries into theUNIX supervisor. In assembly language, they are coded with the use of the
opcodesys, a synonym for thetrap instruction. In this edition, the C language interface routines to the sys-
tem calls have been incorporated in section II.

A small assortment of subroutines is available; they are described in section III. The binary form of most
of them is kept in the system library / lib/ liba.a. The subroutines available from C and from Fortran are al-
so included; they reside in/ lib/ libc.aand/ lib/ libf.a respectively.

The special files section IV discusses the characteristics of each system ‘‘file’ ’ which actually refers to an
I/O device. Thenames in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats and conventions section V documents the structure of particular kinds of files; for example,
the form of the output of the loader and assembler is given. Excludedare files used by only one command,
for example the assembler’s intermediate files.

User-maintained programs and subroutines (sections VI and VII) are not considered part of the UNIX sys-
tem, and the principal reason for listing them is to indicate their existence without necessarily giving a com-
plete description.The authors of the individual programs should be consulted for more information.

Section VIII discusses commands which are not intended for use by the ordinary user, in some cases be-
cause they disclose information in which he is presumably not interested, and in others because they per-
form privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the entry is in
the upper corners of its pages, its preparation date in the upper middle. Entries within each section are al-
phabetized. Thepage numbers of each entry start at 1. (The earlier hope for frequent, partial updates of the
manual is clearly in vain, but in any event it is not feasible to maintain consecutive page numbering in a
document like this.)

2

-

All entries are based on a common format, not all of whose subsections will always appear.

Thenamesection repeats the entry name and gives avery short description of its purpose.

The synopsissummarizes the use of the program being described.A few conventions are used,
particularly in the Commands section:

Boldfacewords are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional. When
an argument is given as ‘‘name’’, it always refers to a file name.

Ellipses ‘‘. . .’’ are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘‘_’ ’ is often taken to mean some sort of flag argument even if it appears in a
position where a file name could appear. Therefore, it is unwise to have files whose
names begin with ‘‘_’ ’.

Thedescriptionsection discusses in detail the subject at hand.

Thefilessection gives the names of files which are built into the program.

A see alsosection gives pointers to related information.

A diagnosticssection discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

The bugs section gives known bugs and sometimes deficiencies.Occasionally also the suggested
fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents.Within each index entry,
the title of the writeup to which it refers is followed by the appropriate section number in parentheses.This
fact is important because there is considerable name duplication among the sections, arising principally
from commands which exist only to exercise a particular system call.

This manual was prepared using theUNIX text editoredand the formatting programtroff.

3

-

HOW TO GET STARTED

This section provides the basic information you need to get started on UNIX: how to log in and log out, how
to communicate through your terminal, and how to run a program.See ‘‘UNIX for Beginners’’ by Brian W.
Kernighan for a more complete introduction to the system.

Logging in. You must call UNIX from an appropriate terminal. UNIX supportsASCII terminals typified by
the TTY 37, the GE Terminet 300, the Dasi 300, and various graphical terminals. You must also have a
valid user name, which may be obtained, together with the telephone number, from the system administra-
tors. Thesame telephone number serves terminals operating at all the standard speeds.After a data con-
nection is established, the login procedure depends on what kind of terminal you are using.

300-baud terminals: Such terminals include the GE Terminet 300, most display terminals, Exe-
cuport, TI, GSI, and certain Anderson-Jacobson terminals.These terminals generally have a speed
switch which should be set at ‘‘300’’ (or ‘‘30’’ for 30 characters per second) and a half/full duplex
switch which should be set at full-duplex. (This switch will often have to be changed since many
other systems require half-duplex). Whena connection is established, the system types ‘‘login:’ ’;
you type your user name, followed by the ‘‘return’’ key. If you have a password, the system asks
for it and turns off the printer on the terminal so the password will not appear. After you have
logged in, the ‘‘return’’, ‘ ‘new line’’, or ‘‘linefeed’’ keys will give exactly the same results.

TTY 37 terminal: When you have established a data connection, the system types out a few
garbage characters (the ‘‘login:’ ’ message at the wrong speed).Depress the ‘‘break’’ (or ‘‘inter-
rupt’’) key; this is a speed-independent signal to UNIX that a 150-baud terminal is in use. The sys-
tem then will type ‘‘login:,’’ this time at the correct speed; you respond with your user name.
From the TTY 37 terminal, and any other which has the ‘‘new-line’’ function (combined carriage
return and linefeed), terminate each line you type with the ‘‘new-line’’ key (not the ‘‘return’’ key).

For all these terminals, it is important that you type your name in lower-case if possible; if you type upper-
case letters,UNIX will assume that your terminal cannot generate lower-case letters and will translate all
subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘‘%’’ to you. (The
Shell is described below under ‘‘How to run a program.’’)

For more information, consultgetty (VIII), which discusses the login sequence in more detail, andtty (IV),
which discusses typewriter I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control ‘‘d’ ’) to the Shell. The
Shell will terminate and the ‘‘login: ’’ message will appear again.

You can also log in directly as another user by giving alogin command (I).

How to communicate through your terminal. When you type to UNIX, a gnome deep in the system is gath-
ering your characters and saving them in a secret place. The characters will not be given to a program until
you type a return (or new-line), as described above in Logging in.

UNIX typewriter I/O is full-duplex. It has full read-ahead, which means that you can type at any time, even
while a program is typing at you. Of course, if you type during output, the output will have the input char-
acters interspersed.However, whatever you type will be saved up and interpreted in correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be exceeded unless the sys-
tem is in trouble.When the read-ahead limit is exceeded, the system throws away all the saved characters.

On a typewriter input line, the character ‘‘@’’ kills all the characters typed before it, so typing mistakes can
be repaired on a single line. Also, the character ‘‘#’ ’ erases the last character typed. Successive uses of

4

-

‘‘#’’ erase characters back to, but not beyond, the beginning of the line. ‘‘@’’ and ‘‘#’ ’ can be transmitted
to a program by preceding them with ‘‘\’ ’. (So,to erase ‘‘\’ ’, you need two ‘‘#’ ’s).

TheASCII ‘‘delete’’ (a.k.a. ‘‘rubout’’) character is not passed to programs but instead generates an interrupt
signal. This signal generally causes whatever program you are running to terminate.It is typically used to
stop a long printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated).The editor, for example, catches in-
terrupts and stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor
printout without losing the file being edited.

Thequit signal is generated by typing theASCII FS character. It not only causes a running program to ter-
minate but also generates a file with the core image of the terminated process.Quit is useful for debugging.

Besides adapting to the speed of the terminal,UNIX tries to be intelligent about whether you have a terminal
with the new-line function or whether it must be simulated with carriage-return and line-feed. In the latter
case, all input carriage returns are turned to new-line characters (the standard line delimiter) and both a car-
riage return and a line feed are echoed to the terminal. If you get into the wrong mode, thesttycommand
(I) will rescue you.

Tab characters are used freely in UNIX source programs.If your terminal does not have the tab function,
you can arrange to have them turned into spaces during output, and echoed as spaces during input. The
system assumes that tabs are set every eight columns. Again, the stty command (I) will set or reset this
mode. Also, there is a file which, if printed onTTY 37 or TermiNet 300 terminals, will set the tab stops cor-
rectly (tabs(V)).

Sectiontty (IV) discusses typewriter I/O more fully.

How to run a program; the Shell. When you have successfully logged into UNIX, a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command.A command is simply an executable program.The Shell looks first
in your current directory (see next section) for a program with the given name, and if none is there, then in
a system directory. There is nothing special about system-provided commands except that they are kept in
adirectory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from one
another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘‘%’’ at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in sectionsh(I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. Whenthe system ad-
ministrator gav e you a user name, he also created a directory for you (ordinarily with the same name as
your user name).When you log in, any file name you type is by default in this directory. Since you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents.Permissions
to have your will with other directories and files will have been granted or denied to you by their owners.
As a matter of observed fact, few UNIX users protect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions you were endowed with at login) usechdir
(I).

Path names. To refer to files not in the current directory, you must use a path name.Full path names begin
with ‘‘/’ ’, the name of the root directory of the whole file system.After the slash comes the name of each
directory containing the next sub-directory (followed by a ‘‘/’ ’) until finally the file name is reached.E.g.:
/ usr/ lem/ filex refers to the file filex in the directorylem; lem is itself a subdirectory of usr; usr springs di-
rectly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the sub-

5

-

directory (no prefixed ‘‘/’ ’).

Without important exception, a path name may be used anywhere a file name is required.

Important commands which modify the contents of files arecp (I), mv (I), andrm (I), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directories, usels (I). Seemkdir
(I) for making directories;rmdir (I) for destroying them.

For a fuller discussion of the file system, see ‘‘The UNIX Time-Sharing System,’’ by the present authors.It
may also be useful to glance through section II of this manual, which discusses system calls, even if you
don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, useed (I). Thethree principal
languages in UNIX are assembly language (seeas (I)), Fortran (seefc (I)), and C (seecc (I)). After the pro-
gram text has been entered through the editor and written on a file, you can give the file to the appropriate
language processor as an argument. Theoutput of the language processor will be left on a file in the cur-
rent directory named ‘‘a.out’’. (If the output is precious, usemv to move it to a less exposed name soon.) If
you wrote in assembly language, you will probably need to load the program with library subroutines; see
ld (I). Theother two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the ‘‘%’’ prompt.

Next, you will needcdb (I) or db (I) to examine the remains of your program. The former is useful for C
programs, the latter for assembly-language.No debugger is much help for Fortran.

Your programs can receive arguments from the command line just as system programs do.Seeexec(II).

Te xt processing. Almost all text is entered through the editor. The commands most often used to write text
on a terminal are:cat, pr, roff, nroff , andtroff, all in section I.

The cat command simply dumpsASCII text on the terminal, with no processing at all. The pr command
paginates the text, supplies headings, and has a facility for multi-column output. Tr off andnroff are elabo-
rate text formatting programs, and require careful forethought in entering both the text and the formatting
commands into the input file. Tr off drives a Graphic Systems phototypesetter; it was used to produce this
manual. Nroff produces output on a typewriter terminal. Roff (I) is a somewhat less elaborate text format-
ting program, and requires somewhat less forethought.

Surprises. Certain commands provide inter-user communication.Even if you do not plan to use them, it
would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in, write (I) is used;mail (I) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual also
suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘‘%’’.

6

